

RSL SERIES Liquid Cooled Reactors High-Performance

Selection Brochure | RSL Reactors

Superior Cooling Technology Highest Power Density Ready for SiC Harmonics

Reactor Applications

- Specially Developed for SiC Switching Frequencies
- Perfect for High Frequency, High THD Applications
- Incredible Inductance Stability Up to 500% Rated Current

Liquid Cooled Advantages

- Highest Power Density
- Lowest Audible Noise
- Sealed Design for Harsh Conditions
- Thermally Isolated from Ambient

ctmmagnetics.com

Half the size. Half the weight. SiC Ready.

RSL Liquid Cooled Reactors are high performance filtering solutions designed for the next generation of drives. Whether it be a drive with silicon carbide components or a typical application with high switching frequencies and/or high THID, these high performance reactors will stand up in some of the most demanding applications. The largest companies in the world rely on CTM technology, with more than 200,000 installed units in some of the harshest environments on the planet.

PRODUCT HIGHLIGHTS

High Performance Solution

Our RSL Reactors are high performance, next-generation, liquid cooled reactors designed specifically for applications with high switching frequencies and high THID. Extremely low core losses enable these reactors to excel where other reactors fail.

Silicon Carbide Capable

This product line is designed specifically with SiC applications in mind. SiC switching devices are quickly being adopted in industry due to their fast switching speeds and low losses. While other reactors cannot handle the speed, RSL reactors are built for switching speeds up to 50 kHz.

Inductance Stability

RSL reactors maintain their inductance over a wide frequency range. Inductance remains stable (<110% rated inductance) at low current levels, and drops off slowly at high current levels. At 200% rated current, 86% of the rated inductance is still available. At 500% reactors maintain and incredible 57% of their rated inductance.

Noisy Signals (high THID)

These reactors are the ideal for signals with very high current harmonics. With superior performance, these harmonics lead to minimal additional heat.

Liquid Cooled vs. Air Cooled

Due to superior heat removal technology, CTM Liquid Cooled products are thermally isolated from their

LIQUID COOLED ADVANTAGES

Highest Power Density

Superior heat removal technology enables smaller magnetics, yielding the highest power density reactors available. Low surface temperatures eliminate clearance requirements, further increasing "effective" power density.

Thermal Isolation

With up to 97% of heat removed through the coolant, liquid cooled reactors have negligible effects on cabinet air temperature. No climate control required.

Sealed Design for Harsh Environments

CTM inductors are environmentally sealed in potting, creating an extremely rugged and reliable design ideal for use in the harshest environments.

Extremely Low Audible Noise

Due to superior materials and geometric shapes, magnetostriction-induced noise is significantly lower in CTM filters. When combined with a sealed package, the result is a nearly silent solution.

Performance Specifications

Impedance Levels *	3% and 5%
Typical Applications	Line Reactors (bridge rectifiers) Line Reactors (active front ends) Load Reactors SiC Switching Frequencies
Voltage Range *	Up to 690 V
Fundamental Frequency	Up to 200 Hz (in most applications)
Maximum Switching Frequency	Up to 50 kHz
Current Range	130 - 1,440 A
Overload Capability	200% rated current for 1 minute
Maximum Coolant Temperature	50 °C (122 °F) (higher with de-rating)
Approved Coolants	Drinking water Water-glycol mixture <i>For R134A, contact CTM</i>
Plumbing Material Options	Aluminum (standard) Copper
Heat Removal	97% to Liquid Coolant 3% to Ambient Air
Maximum Ambient Temperature	65 °C (149 °F)
Maximum Altitude	No Limit
Inductance Curve	93% at 150% load 86% at 200% load 57% at 500% load
Agency Recognitions	

* Impedance calculations assume 480 V and 60 Hz. Use formula below to calculate impedance at other conditions.

$$\% Z_{imp} = 2\pi\sqrt{3} \, \frac{I_{RMS} \cdot f_{Hz} \cdot L_{ind}}{V_{L-L}}$$

Inverter Output Voltage Waveform

Loaded Inductance Curve

Note: Information is for reference only. Data subject to change without notice.

info@ctmmagnetics.com 480.967.9447

ELECTRICAL SPECIFICATIONS:

Size reactors based on the Full Load Amps (FLA) of the drive. The reactor current rating must be greater than or equal to the FLA. Order reactors by CTM Part Number online at <u>ctmmagnetics.com/contact-us</u>, or call us directly at 480.967.9447.

Rated	Fst	3% Impedance				5% Impedance					
Current (A _{RMS})	Motor HP	Part Number ¹	Inductance	Power Loss ² (Watts)		Part Number ¹	Inductance	Power Loss ² (Watts)			
			(µн)	Liquid	Air		(µH)	Liquid	Air		
130	100	RSL0130AB00	174	562	17	RSL0130AC00	286	745	23		
160	125	RSL0160AB00	141	605	19	RSL0160AC00	226	789	24		
200	150	RSL0200AB00	111	658	20	RSL0200AC00	183	896	28		
240	200	RSL0240AB00	90	879	27	RSL0240AC00	152	1030	32		
300	250	RSL0300AB00	74	1053	33	RSL0300AC00	122	1470	45		
360	300	RSL0360AB00	60	1065	33	RSL0360AC00	101	1461	45		
420	350	RSL0420AB00	51	1243	38	RSL0420AC00	86	1697	52		
480	400	RSL0480AB00	47	1414	44	RSL0480AC00	75	1723	53		
540	450	RSL0540AB00	42	1464	45	RSL0540AC00	68	1830	57		
600	500	RSL0600AB00	37	1557	48	RSL0600AC00	62	2217	69		
720	600	RSL0720AB00	30	1667	52	RSL0720AC00	50	2468	76		
840	700	RSL0840AB00	26	1851	57	RSL0840AC00	46	2750	85		
960	800	RSL0960AB00	22	1912	59	RSL0960AC00	39	2767	86		
1080	900	RSL1080AB00	21	2174	67	RSL1080AC00	33	2837	88		
1200	1000	RSL1200AB00	18.2	2328	72	RSL1200AC00	29	2884	89		
1320	1100	RSL1320AB00	17.4	2718	84	RSL1320AC00	28	3195	99		
1440	1200	RSL1440AB00	15.5	2590	80	RSL1440AC00	24	3195	99		

¹ Use part number table (bottom right) to select options. Unspecified options will be assumed to carry the default "-000" option number.

² Loss calculations performed at rated current, 60 Hz fundamental frequency with 2 kHz switching frequency, and 20 °C coolant. THID is 14.7%.

With extremely compact designs and superior thermal management, CTM liquid cooled products offer advanced cooling in a reliable and economical package.

- **Highest Power Density** available, especially when considering total design envelope and clearances
- Extremely Low Audible Noise
- Minimal Heat Rejection to Ambient Air with up to 97% of heat removed directly by coolant
- No Clearance Requirements between components due to heat isolation
- Reliable and Efficient Solution enabled through advanced heat removal system
- Compact Form Factor fits easily into existing cabinets

Part Number System

<u>RSL</u> (07	20	A	B	00) -	0	0	0
RSL SERIES									
Product Type <i>Reactor</i> Line Frequency50/60 Hz Cooling Type <i>Liquid Cooled</i>									
Current Rating (Amps)									
Line Voltage									
$A = 480 \overline{VAC}$ (for impedance calculated on the calculated on	atior	1s)							
Impedance									
B = 3%									
C = 5%									
Enclosure									
00 = Panel									
OPTIONS:									
Coolina System									
0 = Aluminum									
C = Copper									
Unspecified Options									

Note: Information is for reference only. Data subject to change without notice.

MECHANICAL SPECIFICATIONS:

Size reactors based on the Full Load Amps (FLA) of the drive. The reactor current rating must be greater than or equal to the FLA. Order reactors by CTM Part Number online at ctmmagnetics.com/contact-us, or call us directly at 480.967.9447.

	3% Impedan		5% Impedance					
Part Number	Size (in) (W x D x H)	Weight (lb)	Coolant Flow Rate ¹ (GPM)	Part Number	Part Number Size (in) (W x D x H)		Coolant Flow Rate ¹ (GPM)	
RSL0130AB00	9.7 x 9.3 x 9.6	59	0.5	RSL0130AC00	12.0 x 9.3 x 9.6	74	0.7	
RSL0160AB00	9.7 x 9.3 x 9.6	60	0.5	RSL0160AC00	12.0 x 9.3 x 9.6	76	0.7	
RSL0200AB00	12.0 x 9.3 x 9.6	75	0.6	RSL0200AC00	12.6 x 10.1 x 10.3	96	0.8	
RSL0240AB00	12.0 x 9.3 x 9.6	74	0.8	RSL0240AC00	12.6 x 10.1 x 10.3	97	0.9	
RSL0300AB00	12.6 x 10.1 x 10.3	93	0.9	RSL0300AC00	15.3 x 10.1 x 10.3	117	1.3	
RSL0360AB00	12.6 x 10.1 x 10.3	96	0.9	RSL0360AC00	17.0 x 11.3 x 11.7	167	1.3	
RSL0420AB00	12.6 x 10.1 x 10.3	96	1.1	RSL0420AC00	17.0 x 11.3 x 11.7	168	1.5	
RSL0480AB00	15.3 x 10.1 x 10.3	118	1.2	RSL0480AC00	17.0 x 11.3 x 11.7	176	1.5	
RSL0540AB00	15.3 x 10.1 x 10.3	120	1.3	RSL0540AC00	17.0 x 11.3 x 11.7	179	1.6	
RSL0600AB00	17.0 x 11.3 x 11.7	168	1.4	RSL0600AC00	20.9 x 12.5 x 11.9	203	1.8	
RSL0720AB00	17.0 x 11.3 x 11.7	176	1.5	RSL0720AC00	20.3 x 12.9 x 11.9	206	2.0	
RSL0840AB00	17.0 x 11.3 x 11.7	179	1.6	RSL0840AC00	22.0 x 14.0 x 13.3	277	2.2	
RSL0960AB00	17.0 x 11.3 x 11.7	183	1.7	RSL0960AC00	22.0 x 14.0 x 13.3	288	2.2	
RSL1080AB00	20.9 x 12.5 x 11.9	209	1.9	RSL1080AC00	23.1 x 15.5 x 15.1	383	2.5	
RSL1200AB00	20.9 x 12.5 x 11.9	210	2.0	RSL1200AC00	23.1 x 15.5 x 15.1	387	2.5	
RSL1320AB00	22.0 x 14.0 x 13.3	279	2.2	RSL1320AC00	23.1 x 15.5 x 15.1	391	2.8	
RSL1440AB00	22.0 x 14.0 x 13.3	293	2.3	RSL1440AC00	23.1 x 15.5 x 15.1	399	2.8	

¹ Recommended minimum flow rates. Customer must verify flow rate for each application. Contact CTM for operation at lower flow rates, or for R134A use.

3%: 1080-1440 A 5%: 600-1440 A

Note: Information is for reference only. Data subject to change without notice.

THE IDEAL FILTER FOR EVERY APPLICATION

SINE WAVE FILTERS

CTM Magnetics offers a broad portfolio of sine wave filters to meet all your motor filtering needs.

- **Sine 60** The optimal choice for 60 Hz motor protection. Designed for up to 70 Hz fundamental and 2+ kHz switching frequency.
- **FlexSine 120** For both induction and PM motor applications. Designed for up to 120 Hz fundamental and 2.5+ kHz switching frequency. Contact CTM for operating unit above 120 Hz.
- **HighSine 240** Perfect for high-speed, PM motor applications (240 Hz). Designed for up to 240 Hz fundamental and 4+ kHz switching frequency.
- **HighSine 333** Perfect for high-speed, PM motor applications (333 Hz). Designed for up to 333 Hz fundamental and 5+ kHz switching frequency.
- **HighSine 350** Perfect for high-speed, PM motor applications (350 Hz). Designed for up to 350 Hz fundamental and 5+ kHz switching frequency.
- **HighSine 500** Perfect for high-speed, PM motor applications (500 Hz). Designed for up to 500 Hz fundamental and 5+ kHz switching frequency.

GRIDHAWK[®] FILTERS

CTM Magnetics offers cutting edge GridHawk Harmonic filters to meet all your front end needs. CTM also provides a 5 year capacitor warranty on all GridHawk products.

- GridHawk The optimal choice for grid protection. Designed to handle input voltage distortion of ≤5% THVD.
- **GridHawk HD** For applications where the voltage distortion is ≤15% THVD, GridHawk HD is your choice for grid protection. GridHawk HD beats any other passive harmonic filter, AFE (Active front end), or 18 pulse drive available on the market. Where everyone else fails, we succeed.
- **GridHawk XD** For applications where the voltage distortion is ≤25% THVD, contact CTM for XD solutions.

LIQUID COOLED REACTORS

CTM Magnetics offers unique liquid cooled reactors for both line and load side applications. CTM Liquid cooled reactors offer the highest power density, lowest audible noise, are environmentally sealed, and thermally isolated from ambient.

- **RLL** The optimal choice for standard line side protection.
- **RPL** For line and load side protection. Designed to handle higher drive produced harmonics.
- **RSL** Specifically designed for silicon carbide switching applications.
- **R4L** Designed for high frequency applications up to 400 Hz.

Order Your

RSL Liquid Cooled Reactor

ctmmagnetics.com

Contact us online at: ctmmagnetics.com/contact-us

Scan for CTM

Final product specifications subject to change